metal-organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

(2,9-Dimethyl-1,10-phenanthroline- $\kappa^2 N, N'$)bis(2-hydroxybenzoato- κO)-copper(II)

Cuiping Zhai,^a Feng-mei Yan^b and Pei-zheng Zhao^{c*}

^aCollege of Chemistry and Chemical Engineering, Henan University, Kaifeng 475001, People's Republic of China, ^bDepartment of Chemistry and Chemical Engineering, Huanghuai University, Zhumadian 463000, People's Republic of China, and ^cCollege of Chemistry and Environmental Science, Henan Normal University, Xinxiang 453007, People's Republic of China Correspondence e-mail: pz_zhao@hotmail.com

Received 27 October 2008; accepted 6 November 2008

Key indicators: single-crystal X-ray study; T = 291 K; mean σ (C–C) = 0.006 Å; R factor = 0.045; wR factor = 0.121; data-to-parameter ratio = 13.2.

The Cu^{II} atoms in the two independent molecules of the title compound, [Cu(C₇H₅O₃)₂(C₁₄H₁₂N₂)], are each coordinated by a bidentate 2,9-dimethyl-1,10-phenanthroline (dmphen) molecule and two monodentate 2-hydroxybenzoate anions in a distorted tetrahedral geometry. The crystal packing is stabilized by intramolecular hydrogen bonding and π - π interactions between the dmphen rings of neighboring molecules, with distances between their ring planes of 3.5670 (4) and 3.5181 (9) Å.

Related literature

For the features of metal-phenanthroline complexes, see: Naing *et al.* (1995); Wang *et al.* (1996); Wall *et al.* (1999). For related structures, see: Cheng *et al.* (2007); Xuan *et al.* (2007); Zhao *et al.* (2007).

Experimental

Crystal data

 $\begin{bmatrix} Cu(C_7H_5O_3)_2(C_{14}H_{12}N_2) \end{bmatrix} & V = 4847.0 \text{ (8) } \text{\AA}^3 \\ M_r = 546.02 & Z = 8 \\ \text{Monoclinic, } P2_1/c & \text{Mo } K\alpha \text{ radiation} \\ a = 23.819 \text{ (2) } \text{\AA} & \mu = 0.95 \text{ mm}^{-1} \\ b = 12.2576 \text{ (11) } \text{\AA} & T = 291 \text{ (2) K} \\ c = 17.9084 \text{ (17) } \text{\AA} & 0.30 \times 0.21 \times 0.19 \text{ mm} \\ \beta = 112.023 \text{ (1)}^{\circ} \end{array}$

Data collection

Bruker APEXII CCD area-detector diffractometer Absorption correction: multi-scan (SADABS; Sheldrick, 2004) $T_{\rm min} = 0.765, T_{\rm max} = 0.837$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.045$ 675 parameters $wR(F^2) = 0.121$ H-atom parameters constrainedS = 1.01 $\Delta \rho_{max} = 0.38$ e Å⁻³8932 reflections $\Delta \rho_{min} = -0.45$ e Å⁻³

Table 1Selected geometric parameters (Å, °).

Cu1-O2	1.931 (2)	Cu2-O10	1.945 (2)
Cu1-O4	1.946 (2)	Cu2-O8	1.956 (3)
Cu1-N2	1.994 (3)	Cu2-N4	1.992 (3)
Cu1-N1	2.022 (3)	Cu2-N3	2.044 (3)
O2-Cu1-O4	91.00 (11)	O10-Cu2-O8	90.72 (11)
O2-Cu1-N2	152.67 (12)	O10-Cu2-N4	94.59 (12)
O4-Cu1-N2	97.15 (11)	O8-Cu2-N4	155.88 (12)
O2-Cu1-N1	104.90 (11)	O10-Cu2-N3	143.61 (12)
O4-Cu1-N1	144.27 (11)	O8-Cu2-N3	106.20 (12)
N2-Cu1-N1	83.30 (11)	N4-Cu2-N3	82.98 (13)

30637 measured reflections

 $R_{\rm int} = 0.060$

8932 independent reflections

5274 reflections with $I > 2\sigma(I)$

ιbl	e	2				
ud.	ro	<u> </u>	n	ho	nd	ac

Ta

Hydrogen-bond	geometry ((A, °).
---------------	------------	-------	----

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	$D - H \cdots A$
$D12 - H12 \cdots O11$ $D9 - H9 \cdots O7$ $D6 - H6 \cdots O5$ $D3 - H3 \cdots O1$	0.82 0.82 0.82 0.82	1.82 1.84 1.85 1.82	2.549 (4) 2.561 (4) 2.572 (4) 2.553 (5)	147 146 146 148

Data collection: *APEX2* (Bruker, 2004); cell refinement: *APEX2* and *SAINT* (Bruker, 2004); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *publCIF* (Westrip, 2008).

Financial support from the Science Fund of Henan Province for Distinguished Young Scholars (No. 074100510005) is gratefully acknowledged.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HG2438).

References

- Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Cheng, J.-K., Yin, P.-X., Li, Z.-J., Qin, Y.-Y. & Yao, Y.-G. (2007). *Inorg. Chem. Commun.* **10**, 808–810.
- Naing, K., Taniguchi, M., Takahashi, M. & Yamagishi, A. (1995). *Inorg. Chem.* **34**, 350–356.
- Sheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Wall, M., Linkletter, B., Williams, D., Lebuis, A.-M., Hynes, R. C. & Chin, J. (1999). J. Am. Chem. Soc. **121**, 4710–4711.
- Wang, J., Cai, X., Rivas, G., Shiraishi, H., Farias, P. A. M. & Dontha, N. (1996). Anal. Chem. 68, 2629–2634.
- Westrip, S. P. (2008). publCIF. In preparation.
- Xuan, X.-P., Zhao, P.-Z. & Zhang, S.-X. (2007). Acta Cryst. E63, m1817.
- Zhao, P.-Z., Yan, F.-M., Xuan, X.-P. & Tang, Q.-H. (2007). Acta Cryst. E63, m2523.

Acta Cryst. (2008). E64, m1526-m1527 [doi:10.1107/S1600536808036283]

(2,9-Dimethyl-1,10-phenanthroline- $\kappa^2 N, N'$)bis(2-hydroxybenzoato- κO)copper(II)

C. Zhai, F. Yan and P. Zhao

Comment

Metal-phenanthroline complexes have attracted much attention because of their peculiar features (Wang *et al.*, 1996; Wall *et al.*, 1999; Naing *et al.*, 1995). Some Cu(II)-phenanthroline complexes have been synthesized and structures were determined (Cheng *et al.*, 2007; Xuan *et al.*, 2007; Zhao *et al.*, 2007). Recently, we obtained the title compound copper(II) complex (I), by reaction of 2,9-dimethyl-1,10-phenanthroline, 2-hydroxybenzoic acid and Cu(NO₃)₂ in an ethanol/water mixture. The structure of the title compound, Cu(C₁₄H₁₂N₂)(C₆H₄OHCOO)₂,(I), is shown below.

There are two independent molecules in the asymmetric unit. Each Cu^{II} ion is four-coordinated by two N atoms from a 2,9-dimethyl-1,10-phenanthroline ligand, and two O atoms from two 2-hydroxybenzoic anions. The Cu^{II} ion locates in the center, and CuO_2N_2 unit forms a distorted tetrahedral geometry (Fig.1). The Cu—N and Cu—O bond lengths in two independent molecules different slightly (Table 1). The hydroxy directions of 2-hydroxybenzoic anions in the two independent molecules are also different.

An intramolecular hydrogen bond between the hydroxy group and uncoordinated carboxyl O atom stabilizes the conformation of the hydroxybenzoate ligands (Table 2). A partially overlapped arrangement of neighboring parallel Cu1Admphen [symmetry code: (Cu1A) x, y - 1, z] and Cu1B-dmphen rings [symmetry code: (Cu1B) -x + 1, -y + 1, -z + 1], Cu2A-dmphen [symmetry code: (Cu2A) -x + 2, y - 1/2, -z + 3/2] and Cu2C-dmphen rings [symmetry code: (Cu2C) x, -y- 1/2, z + 3/2] are observed in the structure of (I) (Fig.2). The shorter face-to-face separation of 3.5670 (4)Å and 3.5181 (9)Å indicates the existence of π — π stacking between the dmphen ligands.

Experimental

2-hydroxybenzoic acid (0.1389 g, 1 mmol) and NaOH (0.0370 g, 1 mmol) were dissolved in distilled water(10 ml) and $Cu(NO_3)_2.3H_2O$ (0.1222 g, 0.5 mmol) were added. This solution was added to a solution of 2,9-dimethyl-1,10-phenan-throline hemihydrate ($C_{14}H_{12}N_2.0.5H_2O$, 0.1090 g, 0.5 mmol) in ethanol (10 ml). The mixture was stirred at 323 K and then refluxed for 5 h, cooled to room temperature and filtered. Green single crystals of (I) were appeared over a period of eighteen days by slow evaporation at room temperature.

Refinement

Methyl H and hydroxy H atoms were placed in calculated positions, with C—H=0.96 and O—H=0.82 Å, and refined with free torsion angles to fit the electron density; $U_{iso}(H) = 1.5U_{eq}(carrier)$. Other H atoms were placed in calculated positions, with C—H=0.93 Å, and refined in the riding-model approximation with $U_{iso}(H) = 1.2U_{eq}(C)$.

Figures

Fig. 1. The molecular structure of the title complex(I), with atom labels and 30% probability displacement ellipsoids.

Fig. 2. π — π interactions of neighboring molecules and intramolecular hydrogen bonds in the crystal structure of (I).[symmetry code: (Cu1A) x, y - 1, z; (Cu1B) -x + 1, -y + 1, -z + 1; (Cu1D) -x + 1, -y + 2, -z + 1; (Cu2A) -x + 2, y - 1/2, -z + 3/2; (Cu2B) -x + 2, y + 1/2, -z + 3/2; (Cu2C) x, -y - 1/2, z + 3/2; (Cu2D) x, -y + 1/2, z + 3/2]

(2,9-Dimethyl-1,10-phenanthroline- $\kappa^2 N, N'$)bis(2-hydroxybenzoato- κO)copper(II)

Crystal data	
$[Cu(C_7H_5O_3)_2(C_{14}H_{12}N_2)]$	$F_{000} = 2248$
$M_r = 546.02$	$D_{\rm x} = 1.496 {\rm ~Mg} {\rm ~m}^{-3}$
Monoclinic, $P2_1/c$	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
Hall symbol: -P 2ybc	Cell parameters from 3270 reflections
a = 23.819 (2) Å	$\theta = 2.4 - 19.2^{\circ}$
<i>b</i> = 12.2576 (11) Å	$\mu = 0.95 \text{ mm}^{-1}$
c = 17.9084 (17) Å	T = 291 (2) K
$\beta = 112.023 \ (1)^{\circ}$	Block, green
V = 4847.0 (8) Å ³	$0.30\times0.21\times0.19~mm$
Z = 8	

Data collection

Bruker APEXII CCD area-detector diffractometer	8932 independent reflections
Radiation source: fine-focus sealed tube	5274 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.060$
T = 291(2) K	$\theta_{\text{max}} = 25.5^{\circ}$
ϕ and ω scans	$\theta_{\min} = 2.4^{\circ}$
Absorption correction: multi-scan (SADABS; Sheldrick, 2004)	$h = -28 \rightarrow 27$
$T_{\min} = 0.765, \ T_{\max} = 0.837$	$k = -14 \rightarrow 14$
30637 measured reflections	$l = -21 \rightarrow 21$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.045$	H-atom parameters constrained
$wR(F^2) = 0.122$	$w = 1/[\sigma^2(F_o^2) + (0.051P)^2 + 0.2481P]$ where $P = (F_o^2 + 2F_c^2)/3$
<i>S</i> = 1.01	$(\Delta/\sigma)_{\text{max}} = 0.001$
8932 reflections	$\Delta \rho_{max} = 0.38 \text{ e} \text{ Å}^{-3}$
675 parameters	$\Delta \rho_{min} = -0.45 \text{ e } \text{\AA}^{-3}$
Primary atom site location: structure-invariant direct	

methods Primary atom site location: structure-invariant direct Extinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes)

are estimated using the full covariance matrix. The cell e.s.d.'s are taken

into account individually in the estimation of e.s.d.'s in distances, angles

and torsion angles; correlations between e.s.d.'s in cell parameters are only

used when they are defined by crystal symmetry. An approximate (isotropic)

treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and

goodness of fit S are based on F^2 , conventional R-factors R are based

on F, with F set to zero for negative F^2 . The threshold expression of

 $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc*. and is

not relevant to the choice of reflections for refinement. R-factors based

on F^2 are statistically about twice as large as those based on F, and R-

factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	у	Z	$U_{\rm iso}$ */ $U_{\rm eq}$
Cu1	0.416752 (19)	0.76816 (4)	0.34347 (3)	0.04372 (14)
Cu2	0.91833 (2)	0.24372 (4)	0.06488 (3)	0.04679 (15)
01	0.42604 (14)	0.5478 (3)	0.36158 (18)	0.0828 (10)
02	0.37117 (12)	0.6601 (2)	0.26599 (15)	0.0537 (7)
O3	0.4003 (2)	0.3447 (3)	0.3513 (2)	0.1039 (13)

H3	0.4177	0.4014	0.3714	0.156*
O4	0.42450 (12)	0.8580 (2)	0.25824 (15)	0.0525 (7)
O5	0.33691 (13)	0.9202 (2)	0.25654 (16)	0.0636 (8)
O6	0.26673 (13)	1.0250 (3)	0.13213 (18)	0.0715 (8)
H6	0.2774	0.9978	0.1772	0.107*
O7	0.92602 (13)	0.4499 (2)	0.07908 (17)	0.0690 (8)
O8	0.85069 (12)	0.3372 (2)	0.06067 (17)	0.0611 (7)
09	0.90651 (19)	0.6548 (3)	0.0833 (3)	0.1015 (12)
Н9	0.9264	0.5995	0.0853	0.152*
O10	0.92554 (11)	0.1888 (2)	0.16999 (15)	0.0540 (7)
011	0.84406 (12)	0.0976 (2)	0.09313 (15)	0.0568 (7)
012	0.79075 (13)	-0.0325 (2)	0.15603 (18)	0.0675 (8)
H12	0.7973	-0.0009	0.1198	0.101*
N1	0.38290 (13)	0.7629 (2)	0.43145 (16)	0.0390 (7)
N2	0.49111 (13)	0.8211 (2)	0.43227 (17)	0.0404 (7)
N3	0.90189 (14)	0.1985 (2)	-0.05127 (18)	0.0461 (8)
N4	1.00369 (13)	0.2094 (2)	0.08003 (19)	0.0456 (8)
C1	0.35133 (17)	0.4709 (3)	0.2453 (2)	0.0479 (10)
C2	0.3600 (2)	0.3653 (4)	0.2763 (3)	0.0668 (12)
C3	0.3263 (3)	0.2798 (4)	0.2294 (4)	0.0814 (16)
H3A	0.3305	0.2098	0.2509	0.098*
C4	0.2874 (2)	0.2979 (4)	0.1529 (4)	0.0787 (15)
H4	0.2660	0.2397	0.1220	0.094*
C5	0.27904 (19)	0.4010 (4)	0.1202 (3)	0.0681 (12)
H5	0.2524	0.4125	0.0675	0.082*
C6	0.31061 (17)	0.4865 (3)	0.1665 (2)	0.0543 (10)
H6A	0.3047	0.5564	0.1448	0.065*
C7	0.38553 (18)	0.5648 (4)	0.2941 (2)	0.0521 (10)
C8	0.36927 (17)	0.9750 (3)	0.1521 (2)	0.0444 (9)
C9	0.3138 (2)	1.0240 (3)	0.1071 (2)	0.0552 (11)
C10	0.3058 (2)	1.0737 (4)	0.0339 (3)	0.0713 (13)
H10	0.2688	1.1055	0.0037	0.086*
C11	0.3519 (3)	1.0761 (4)	0.0061 (3)	0.0842 (16)
H11	0.3459	1.1088	-0.0431	0.101*
C12	0.4071 (2)	1.0306 (4)	0.0503 (3)	0.0806 (14)
H12A	0.4386	1.0337	0.0317	0.097*
C13	0.4154 (2)	0.9797 (3)	0.1232 (2)	0.0606 (11)
H13	0.4527	0.9483	0.1529	0.073*
C14	0.37703 (19)	0.9146 (3)	0.2272 (2)	0.0474 (10)
C15	0.32818 (16)	0.7343 (3)	0.4286 (2)	0.0445 (9)
C16	0.31365 (18)	0.7396 (3)	0.4971 (2)	0.0535 (10)
H16	0.2753	0.7183	0.4938	0.064*
C17	0.35443 (19)	0.7751 (3)	0.5680 (3)	0.0545 (11)
H17	0.3446	0.7770	0.6136	0.065*
C18	0.41203 (17)	0.8093 (3)	0.5725 (2)	0.0452 (9)
C19	0.45829 (19)	0.8514 (3)	0.6437 (2)	0.0568 (11)
H19	0.4510	0.8555	0.6912	0.068*
C20	0.5121 (2)	0.8852 (3)	0.6438 (2)	0.0603 (11)
H20	0.5408	0.9140	0.6905	0.072*

C21	0.52535 (16)	0.8772 (3)	0.5721 (2)	0.0467 (10)
C22	0.58051 (18)	0.9085 (3)	0.5682 (2)	0.0587 (11)
H22	0.6104	0.9403	0.6125	0.070*
C23	0.59019 (17)	0.8921 (3)	0.4987 (2)	0.0579 (11)
H23	0.6272	0.9118	0.4962	0.069*
C24	0.54513 (16)	0.8458 (3)	0.4307 (2)	0.0479 (10)
C25	0.48185 (16)	0.8339 (3)	0.5027 (2)	0.0389 (8)
C26	0.42421 (16)	0.8003 (3)	0.5022 (2)	0.0374 (8)
C27	0.28159 (17)	0.6985 (4)	0.3492 (2)	0.0632 (12)
H27A	0.2888	0.7348	0.3061	0.095*
H27B	0.2419	0.7169	0.3473	0.095*
H27C	0.2843	0.6210	0.3435	0.095*
C28	0.55725 (18)	0.8220 (4)	0.3559 (2)	0.0657 (12)
H28A	0.5362	0.7567	0.3311	0.099*
H28B	0.6000	0.8122	0.3698	0.099*
H28C	0.5433	0.8819	0.3190	0.099*
C29	0.83703 (17)	0.5201 (3)	0.0916 (2)	0.0480 (10)
C30	0.8550 (2)	0.6281 (4)	0.0941 (2)	0.0621 (12)
C31	0.8204 (3)	0.7101 (4)	0.1074 (3)	0.0879 (18)
H31	0.8314	0.7825	0.1055	0.105*
C32	0.7707 (3)	0.6867 (5)	0.1229 (3)	0.097 (2)
H32	0.7484	0.7430	0.1330	0.117*
C33	0.7525 (2)	0.5796 (5)	0.1242 (3)	0.0843 (16)
H33	0.7186	0.5639	0.1364	0.101*
C34	0.78519 (19)	0.4953 (4)	0.1070 (2)	0.0644 (12)
H34	0.7725	0.4233	0.1057	0.077*
C35	0.87370 (19)	0.4315 (3)	0.0756 (2)	0.0495 (10)
C36	0.87985 (16)	0.0701 (3)	0.2347 (2)	0.0441 (9)
C37	0.83292 (18)	-0.0038 (3)	0.2274 (3)	0.0509 (10)
C38	0.8293 (2)	-0.0506 (4)	0.2951 (3)	0.0703 (13)
H38	0.7979	-0.0984	0.2906	0.084*
C39	0.8722 (2)	-0.0267 (4)	0.3695 (3)	0.0769 (14)
H39	0.8692	-0.0588	0.4150	0.092*
C40	0.9200 (2)	0.0443 (4)	0.3788 (3)	0.0710 (13)
H40	0.9492	0.0587	0.4294	0.085*
C41	0.92263 (18)	0.0929 (3)	0.3104 (2)	0.0570 (11)
H41	0.9537	0.1417	0.3153	0.068*
C42	0.88268 (18)	0.1215 (3)	0.1610(2)	0.0460 (9)
C43	0.84987 (19)	0.1941 (3)	-0.1155 (2)	0.0556 (11)
C44	0.8485 (2)	0.1465 (4)	-0.1871 (3)	0.0698 (13)
H44	0.8120	0.1430	-0.2311	0.084*
C45	0.8992 (2)	0.1054 (4)	-0.1936 (3)	0.0722 (13)
H45	0.8973	0.0744	-0.2419	0.087*
C46	0.9546 (2)	0.1095 (3)	-0.1280 (2)	0.0569 (11)
C47	1.0111 (3)	0.0680 (3)	-0.1272 (3)	0.0724 (14)
H47	1.0125	0.0359	-0.1735	0.087*
C48	1.0621 (2)	0.0744 (3)	-0.0611 (3)	0.0724 (14)
H48	1.0980	0.0468	-0.0627	0.087*
C49	1.0621 (2)	0.1227 (3)	0.0115 (3)	0.0582 (11)

C50	1.1135 (2)	0.1331 (3)	0.0828 (3)	0.0708 (13)
H50	1.1506	0.1060	0.0852	0.085*
C51	1.1092 (2)	0.1825 (4)	0.1482 (3)	0.0721 (13)
H51	1.1435	0.1902	0.1950	0.087*
C52	1.05307 (18)	0.2222 (3)	0.1457 (3)	0.0544 (11)
C53	1.00751 (17)	0.1630 (3)	0.0127 (2)	0.0458 (9)
C54	0.95339 (18)	0.1572 (3)	-0.0572 (2)	0.0472 (10)
C55	0.7945 (2)	0.2406 (4)	-0.1093 (3)	0.0784 (14)
H55A	0.7885	0.2097	-0.0636	0.118*
H55B	0.7602	0.2239	-0.1574	0.118*
H55C	0.7987	0.3183	-0.1030	0.118*
C56	1.04876 (19)	0.2811 (4)	0.2161 (2)	0.0688 (13)
H56A	1.0179	0.3361	0.1976	0.103*
H56B	1.0870	0.3148	0.2463	0.103*
H56C	1.0386	0.2303	0.2499	0.103*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cu1	0.0443 (3)	0.0543 (3)	0.0349 (3)	-0.0088 (2)	0.0174 (2)	-0.0012 (2)
Cu2	0.0473 (3)	0.0509 (3)	0.0462 (3)	0.0020 (2)	0.0221 (2)	-0.0010 (2)
01	0.079 (2)	0.090 (2)	0.061 (2)	0.0205 (18)	0.0053 (18)	-0.0111 (17)
O2	0.0684 (18)	0.0526 (17)	0.0416 (15)	-0.0112 (14)	0.0223 (14)	-0.0057 (13)
O3	0.164 (4)	0.076 (2)	0.073 (2)	0.045 (3)	0.046 (2)	0.0203 (19)
O4	0.0520 (17)	0.0604 (17)	0.0450 (15)	-0.0038 (14)	0.0180 (13)	0.0105 (13)
O5	0.071 (2)	0.0692 (19)	0.0609 (18)	0.0028 (15)	0.0367 (16)	0.0050 (15)
O6	0.071 (2)	0.067 (2)	0.074 (2)	0.0095 (16)	0.0252 (18)	0.0059 (17)
O7	0.0567 (19)	0.073 (2)	0.085 (2)	-0.0001 (16)	0.0352 (17)	-0.0041 (17)
08	0.0611 (18)	0.0504 (17)	0.073 (2)	0.0047 (14)	0.0261 (15)	-0.0054 (15)
09	0.119 (3)	0.066 (2)	0.121 (3)	-0.025 (2)	0.048 (3)	-0.003 (2)
O10	0.0480 (16)	0.0677 (18)	0.0506 (17)	-0.0042 (14)	0.0235 (13)	0.0045 (14)
011	0.0665 (18)	0.0551 (17)	0.0483 (17)	0.0008 (14)	0.0211 (15)	-0.0071 (13)
O12	0.066 (2)	0.0548 (19)	0.079 (2)	-0.0062 (15)	0.0244 (18)	-0.0037 (16)
N1	0.0407 (17)	0.0423 (17)	0.0376 (17)	-0.0067 (14)	0.0189 (14)	-0.0010 (14)
N2	0.0404 (18)	0.0444 (18)	0.0396 (18)	-0.0016 (14)	0.0184 (14)	0.0023 (14)
N3	0.055 (2)	0.0425 (18)	0.0437 (19)	-0.0013 (15)	0.0212 (17)	0.0019 (14)
N4	0.0475 (19)	0.0410 (18)	0.050 (2)	-0.0027 (14)	0.0208 (17)	0.0015 (15)
C1	0.053 (2)	0.047 (2)	0.055 (3)	-0.0010 (19)	0.033 (2)	-0.006 (2)
C2	0.091 (4)	0.058 (3)	0.068 (3)	0.009 (3)	0.049 (3)	0.003 (3)
C3	0.114 (5)	0.047 (3)	0.118 (5)	-0.001 (3)	0.084 (4)	0.001 (3)
C4	0.079 (4)	0.067 (3)	0.108 (4)	-0.017 (3)	0.056 (3)	-0.032 (3)
C5	0.058 (3)	0.066 (3)	0.079 (3)	-0.005 (2)	0.024 (2)	-0.020 (3)
C6	0.058 (3)	0.048 (2)	0.060 (3)	0.000 (2)	0.026 (2)	-0.008 (2)
C7	0.052 (3)	0.068 (3)	0.045 (3)	0.008 (2)	0.027 (2)	-0.004 (2)
C8	0.050 (2)	0.043 (2)	0.037 (2)	-0.0044 (18)	0.0135 (19)	-0.0027 (17)
C9	0.070 (3)	0.046 (2)	0.049 (3)	-0.001 (2)	0.021 (2)	-0.007 (2)
C10	0.082 (3)	0.072 (3)	0.047 (3)	0.014 (3)	0.009 (3)	0.006 (2)
C11	0.121 (5)	0.082 (4)	0.048 (3)	0.018 (3)	0.032 (3)	0.024 (3)

Cu1—O2		1.931 (2)	C20	—C21	1.43	36 (5)
Geometric p	arameters (Å, °)					
C56	0.060 (3)	0.080 (3)	0.060 (3)	-0.017 (2)	0.015 (2)	-0.011 (2)
C55	0.056 (3)	0.101 (4)	0.064 (3)	0.003 (3)	0.006 (2)	-0.010 (3)
C54	0.062 (3)	0.039 (2)	0.049 (2)	-0.0037 (19)	0.030 (2)	0.0029 (18)
C53	0.056 (3)	0.032 (2)	0.060 (3)	-0.0012 (18)	0.035 (2)	0.0052 (18)
C52	0.047 (3)	0.051 (2)	0.063 (3)	-0.006 (2)	0.017 (2)	0.004 (2)
C51	0.053 (3)	0.060 (3)	0.092 (4)	-0.004 (2)	0.014 (3)	0.002 (3)
C50	0.051 (3)	0.055 (3)	0.114 (4)	0.005 (2)	0.040 (3)	0.008 (3)
C49	0.067 (3)	0.037 (2)	0.087 (3)	0.001 (2)	0.049 (3)	0.001 (2)
C48	0.080 (4)	0.051 (3)	0.116 (4)	0.002 (2)	0.071 (3)	-0.002 (3)
C47	0.109 (4)	0.050 (3)	0.088 (4)	0.004 (3)	0.071 (3)	-0.001 (3)
C46	0.090 (3)	0.042 (2)	0.053 (3)	-0.001 (2)	0.043 (3)	-0.001 (2)
C45	0.115 (4)	0.064 (3)	0.042 (3)	0.000 (3)	0.033 (3)	-0.006 (2)
C44	0.087 (4)	0.070 (3)	0.044 (3)	0.000 (3)	0.016 (3)	-0.005 (2)
C43	0.063 (3)	0.056 (3)	0.043 (2)	0.000 (2)	0.015 (2)	0.003 (2)
C42	0.049 (2)	0.039 (2)	0.057 (3)	0.0128 (19)	0.028 (2)	-0.0004 (19)
C41	0.064 (3)	0.057 (3)	0.054 (3)	0.007 (2)	0.027 (2)	0.000 (2)
C40	0.086 (4)	0.078 (3)	0.051 (3)	0.016 (3)	0.027 (3)	0.006 (2)
C39	0.107 (4)	0.071 (3)	0.078 (4)	0.017 (3)	0.064 (3)	0.016 (3)
C38	0.079 (3)	0.061 (3)	0.088 (4)	0.005 (2)	0.052 (3)	0.010 (3)
C37	0.055 (3)	0.045 (2)	0.063 (3)	0.011 (2)	0.034 (2)	0.005 (2)
C36	0.046 (2)	0.043 (2)	0.049 (2)	0.0101 (18)	0.024 (2)	0.0017 (18)
C35	0.054 (3)	0.053 (3)	0.039 (2)	0.006 (2)	0.015 (2)	0.0022 (19)
C34	0.054 (3)	0.076 (3)	0.060 (3)	0.013 (2)	0.018 (2)	0.000 (2)
C33	0.055 (3)	0.117 (5)	0.073 (3)	0.030 (3)	0.014 (3)	-0.005 (3)
C32	0.092 (4)	0.092 (5)	0.082 (4)	0.051 (4)	0.003 (3)	-0.019 (3)
C31	0.105 (4)	0.053 (3)	0.076 (4)	0.026 (3)	0.000 (3)	-0.013 (3)
C30	0.070 (3)	0.054 (3)	0.051 (3)	0.003 (2)	0.010 (2)	-0.004 (2)
C29	0.052 (3)	0.044 (2)	0.038 (2)	0.0078 (19)	0.0053 (19)	-0.0018 (18)
C28	0.050 (3)	0.097 (3)	0.060 (3)	-0.005 (2)	0.032 (2)	0.004 (2)
C27	0.042 (2)	0.085 (3)	0.062 (3)	-0.013 (2)	0.020 (2)	-0.006 (2)
C26	0.044 (2)	0.0333 (19)	0.037 (2)	0.0037 (16)	0.0184 (18)	0.0030 (16)
C25	0.043 (2)	0.040 (2)	0.035 (2)	-0.0033 (16)	0.0169 (18)	0.0015 (16)
C24	0.041 (2)	0.058 (3)	0.048 (2)	0.0000 (19)	0.020 (2)	0.0086 (19)
C23	0.035 (2)	0.079 (3)	0.057 (3)	-0.009 (2)	0.014 (2)	0.011 (2)
C22	0.047 (3)	0.068 (3)	0.049 (3)	-0.010 (2)	0.005 (2)	-0.001 (2)
C21	0.044 (2)	0.052 (2)	0.039 (2)	-0.0060 (18)	0.0098 (18)	0.0031 (18)
C20	0.068 (3)	0.069 (3)	0.040 (2)	-0.012 (2)	0.015 (2)	-0.007 (2)
C19	0.073 (3)	0.063 (3)	0.039 (2)	-0.002 (2)	0.026 (2)	-0.001 (2)
C18	0.056 (3)	0.044 (2)	0.043 (2)	-0.0002 (18)	0.026 (2)	-0.0003 (18)
C17	0.067 (3)	0.057 (3)	0.056 (3)	0.005 (2)	0.042 (2)	0.010 (2)
C16	0.048 (2)	0.060 (3)	0.063 (3)	-0.003 (2)	0.033 (2)	0.003 (2)
C15	0.044 (2)	0.045 (2)	0.048 (2)	-0.0004 (18)	0.0222 (19)	0.0019 (18)
C14	0.056 (3)	0.043 (2)	0.041 (2)	-0.012 (2)	0.016 (2)	-0.0079 (18)
C13	0.069 (3)	0.063 (3)	0.051 (3)	0.000 (2)	0.024 (2)	0.011 (2)
C12	0.100 (4)	0.087 (4)	0.067 (3)	0.004 (3)	0.046 (3)	0.017 (3)

Cu1—O4	1.946 (2)	C20—H20	0.9300
Cu1—N2	1.994 (3)	C21—C25	1.390 (5)
Cu1—N1	2.022 (3)	C21—C22	1.396 (5)
Cu2—O10	1.945 (2)	C22—C23	1.363 (5)
Cu2—O8	1.956 (3)	C22—H22	0.9300
Cu2—N4	1.992 (3)	C23—C24	1.405 (5)
Cu2—N3	2.044 (3)	С23—Н23	0.9300
O1—C7	1.249 (4)	C24—C28	1.501 (5)
O2—C7	1.267 (4)	C25—C26	1.431 (5)
O3—C2	1.350 (5)	С27—Н27А	0.9600
O3—H3	0.8200	С27—Н27В	0.9600
O4—C14	1.264 (4)	С27—Н27С	0.9600
O5—C14	1.254 (4)	C28—H28A	0.9600
O6—C9	1.355 (5)	C28—H28B	0.9600
O6—H6	0.8200	C28—H28C	0.9600
O7—C35	1.245 (4)	C29—C30	1.387 (6)
O8—C35	1.264 (4)	C29—C34	1.395 (5)
O9—C30	1.351 (5)	C29—C35	1.487 (5)
О9—Н9	0.8200	C30—C31	1.377 (6)
O10—C42	1.275 (4)	C31—C32	1.344 (7)
O11—C42	1.254 (4)	С31—Н31	0.9300
O12—C37	1.343 (4)	C32—C33	1.386 (8)
O12—H12	0.8200	С32—Н32	0.9300
N1—C15	1.332 (4)	C33—C34	1.396 (6)
N1—C26	1.360 (4)	С33—Н33	0.9300
N2—C24	1.332 (4)	C34—H34	0.9300
N2—C25	1.369 (4)	C36—C41	1.384 (5)
N3—C43	1.339 (5)	C36—C37	1.407 (5)
N3—C54	1.367 (4)	C36—C42	1.487 (5)
N4—C52	1.324 (5)	C37—C38	1.372 (5)
N4—C53	1.367 (4)	C38—C39	1.372 (6)
C1—C2	1.392 (5)	C38—H38	0.9300
C1—C6	1.394 (5)	C39—C40	1.393 (6)
C1—C7	1.490 (5)	С39—Н39	0.9300
C2—C3	1.394 (6)	C40—C41	1.384 (5)
C3—C4	1.354 (6)	C40—H40	0.9300
С3—НЗА	0.9300	C41—H41	0.9300
C4—C5	1.375 (6)	C43—C44	1.397 (5)
C4—H4	0.9300	C43—C55	1.479 (6)
C5—C6	1.373 (5)	C44—C45	1.355 (6)
С5—Н5	0.9300	C44—H44	0.9300
С6—Н6А	0.9300	C45—C46	1.400 (6)
C8—C13	1.381 (5)	C45—H45	0.9300
C8—C9	1.399 (5)	C46—C54	1.407 (5)
C8—C14	1.484 (5)	C46—C47	1.434 (6)
C9—C10	1.392 (6)	C47—C48	1.343 (6)
C10—C11	1.364 (6)	C47—H47	0.9300
C10—H10	0.9300	C48—C49	1.429 (6)
C11—C12	1.373 (6)	C48—H48	0.9300

C11—H11	0.9300	C49—C53	1.399 (5)
C12—C13	1.391 (5)	C49—C50	1.404 (6)
C12—H12A	0.9300	C50—C51	1.356 (6)
С13—Н13	0.9300	С50—Н50	0.9300
C15—C16	1.396 (5)	C51—C52	1.407 (6)
C15—C27	1.504 (5)	C51—H51	0.9300
C16—C17	1.350 (5)	C52—C56	1.490 (6)
C16—H16	0.9300	C53—C54	1.423 (5)
C17—C18	1.408 (5)	С55—Н55А	0.9600
С17—Н17	0.9300	С55—Н55В	0.9600
C18—C26	1.399 (5)	С55—Н55С	0.9600
C18—C19	1.433 (5)	С56—Н56А	0.9600
C19—C20	1.346 (5)	С56—Н56В	0.9600
C19—H19	0.9300	С56—Н56С	0.9600
O2—Cu1—O4	91.00(11)	C21—C25—C26	120 5 (3)
O2—Cu1—N2	152.67 (12)	N1-C26-C18	123.0(3)
04—Cu1—N2	97 15 (11)	N1-C26-C25	1174(3)
O2—Cu1—N1	104 90 (11)	$C_{18} - C_{26} - C_{25}$	1196(3)
04—Cu1—N1	144 27 (11)	C15-C27-H27A	109.5
N^2 —Cu1—N1	83 30 (11)	C15 - C27 - H27B	109.5
$010-Cu^2-08$	90.72 (11)	H27A-C27-H27B	109.5
$010 - Cu^2 - N4$	94 59 (12)	$C_{15} - C_{27} - H_{27}C$	109.5
08—Cu2—N4	155 88 (12)	H27A - C27 - H27C	109.5
$010-Cu^2-N^3$	143 61 (12)	H27B-C27-H27C	109.5
$08-Cu^2-N^3$	106 20 (12)	C24—C28—H28A	109.5
N4—Cu2—N3	82.98 (13)	C24—C28—H28B	109.5
C7—O2—Cu1	110.6 (2)	H28A-C28-H28B	109.5
C2	109.5	C24—C28—H28C	109.5
C14	108.9 (2)	$H_{28A} - C_{28} - H_{28C}$	109.5
C9—O6—H6	109.5	H28B-C28-H28C	109.5
C35-O8-Cu2	104.0 (3)	$C_{30} - C_{29} - C_{34}$	119.2 (4)
C30—O9—H9	109.5	$C_{30} - C_{29} - C_{35}$	120 4 (4)
C42—O10—Cu2	109.0 (2)	C34—C29—C35	120.4 (4)
C37—O12—H12	109.5	09-C30-C31	118.9 (5)
C15—N1—C26	118.7 (3)	09-C30-C29	120.9 (4)
C15—N1—Cu1	130.4 (2)	C31—C30—C29	120.3 (5)
C26—N1—Cu1	110.8 (2)	C32—C31—C30	120.8 (5)
C24—N2—C25	118.9 (3)	C32—C31—H31	119.6
C24—N2—Cu1	129.3 (3)	С30—С31—Н31	119.6
C25—N2—Cu1	111.8 (2)	C31—C32—C33	120.7 (5)
C43—N3—C54	119.1 (3)	C31—C32—H32	119.6
C43—N3—Cu2	130.4 (3)	С33—С32—Н32	119.6
C54—N3—Cu2	110.1 (2)	C32—C33—C34	119.5 (5)
C52—N4—C53	120.1 (3)	С32—С33—Н33	120.2
C52—N4—Cu2	128.1 (3)	С34—С33—Н33	120.2
C53—N4—Cu2	111.7 (2)	C29—C34—C33	119.4 (5)
C2—C1—C6	118.3 (4)	С29—С34—Н34	120.3
C2—C1—C7	121.2 (4)	С33—С34—Н34	120.3
C6—C1—C7	120.5 (4)	O7—C35—O8	121.5 (4)

O3—C2—C1	121.0 (4)	O7—C35—C29	120.5 (4)
O3—C2—C3	119.5 (5)	O8—C35—C29	118.0 (4)
C1—C2—C3	119.5 (5)	C41—C36—C37	119.2 (4)
C4—C3—C2	120.5 (5)	C41—C36—C42	121.5 (4)
С4—С3—Н3А	119.8	C37—C36—C42	119.3 (4)
С2—С3—НЗА	119.8	O12—C37—C38	117.3 (4)
C3—C4—C5	121.1 (5)	O12—C37—C36	122.8 (4)
C3—C4—H4	119.5	C38—C37—C36	119.9 (4)
C5—C4—H4	119.5	C39—C38—C37	119.9 (5)
C6—C5—C4	119.1 (5)	С39—С38—Н38	120.1
С6—С5—Н5	120.5	С37—С38—Н38	120.1
C4—C5—H5	120.5	C38—C39—C40	121.7 (4)
C5—C6—C1	121.5 (4)	С38—С39—Н39	119.1
С5—С6—Н6А	119.3	С40—С39—Н39	119.1
C1—C6—H6A	119.3	C41—C40—C39	118.0 (4)
O1—C7—O2	122.3 (4)	C41—C40—H40	121.0
O1—C7—C1	119.5 (4)	С39—С40—Н40	121.0
O2—C7—C1	118.2 (4)	C40—C41—C36	121.2 (4)
C13—C8—C9	118.6 (4)	C40—C41—H41	119.4
C13—C8—C14	120.9 (4)	C36—C41—H41	119.4
C9—C8—C14	120.4 (4)	O11—C42—O10	122.4 (4)
O6—C9—C10	118.0 (4)	O11—C42—C36	120.1 (4)
O6—C9—C8	122.2 (4)	O10—C42—C36	117.6 (4)
С10—С9—С8	119.8 (4)	N3—C43—C44	120.1 (4)
C11—C10—C9	120.5 (4)	N3—C43—C55	119.0 (4)
C11-C10-H10	119.7	C44—C43—C55	120.9 (4)
С9—С10—Н10	119.7	C45—C44—C43	121.3 (4)
C10-C11-C12	120.5 (4)	C45—C44—H44	119.3
C10-C11-H11	119.7	C43—C44—H44	119.3
C12—C11—H11	119.7	C44—C45—C46	120.3 (4)
C11—C12—C13	119.6 (5)	C44—C45—H45	119.9
C11—C12—H12A	120.2	C46—C45—H45	119.9
C13—C12—H12A	120.2	C45—C46—C54	116.2 (4)
C8—C13—C12	121.0 (4)	C45—C46—C47	125.5 (4)
С8—С13—Н13	119.5	C54—C46—C47	118.3 (4)
C12—C13—H13	119.5	C48—C47—C46	121.6 (4)
O5—C14—O4	122.8 (4)	C48—C47—H47	119.2
O5—C14—C8	119.8 (4)	С46—С47—Н47	119.2
O4—C14—C8	117.4 (4)	C47—C48—C49	121.2 (4)
N1-C15-C16	121.0 (3)	C47—C48—H48	119.4
N1-C15-C27	118.5 (3)	C49—C48—H48	119.4
C16—C15—C27	120.4 (3)	C53—C49—C50	116.9 (4)
C17—C16—C15	121.0 (4)	C53—C49—C48	118.4 (4)
C17—C16—H16	119.5	C50—C49—C48	124.7 (4)
C15—C16—H16	119.5	C51—C50—C49	120.2 (4)
C16—C17—C18	119.5 (4)	С51—С50—Н50	119.9
С16—С17—Н17	120.3	С49—С50—Н50	119.9
C18—C17—H17	120.3	C50—C51—C52	120.3 (4)
C26—C18—C17	116.9 (3)	C50—C51—H51	119.8

C26—C18—C19	118.7 (4)	C52—C51—H51	119.8
C17—C18—C19	124.5 (4)	N4—C52—C51	120.3 (4)
C20-C19-C18	121.7 (4)	N4—C52—C56	119.3 (4)
С20—С19—Н19	119.2	C51—C52—C56	120.4 (4)
С18—С19—Н19	119.2	N4—C53—C49	122.0 (4)
C19—C20—C21	120.5 (4)	N4—C53—C54	117.3 (3)
С19—С20—Н20	119.8	C49—C53—C54	120.7 (4)
C21—C20—H20	119.8	N3—C54—C46	123.1 (4)
C25—C21—C22	117.4 (4)	N3—C54—C53	117.2 (3)
C25—C21—C20	119.0 (3)	C46—C54—C53	119.7 (4)
C22—C21—C20	123.6 (4)	C43—C55—H55A	109.5
C23—C22—C21	119.3 (4)	С43—С55—Н55В	109.5
С23—С22—Н22	120.3	Н55А—С55—Н55В	109.5
C21—C22—H22	120.3	С43—С55—Н55С	109.5
C22—C23—C24	121.0 (4)	Н55А—С55—Н55С	109.5
С22—С23—Н23	119.5	H55B—C55—H55C	109.5
C24—C23—H23	119.5	С52—С56—Н56А	109.5
N2—C24—C23	120.2 (4)	С52—С56—Н56В	109.5
N2-C24-C28	119.0 (3)	H56A—C56—H56B	109.5
C23—C24—C28	120.7 (3)	С52—С56—Н56С	109.5
N2-C25-C21	123.0 (3)	H56A—C56—H56C	109.5
N2—C25—C26	116.6 (3)	H56B—C56—H56C	109.5
O4—Cu1—O2—C7	141.8 (3)	C24—N2—C25—C26	-176.5 (3)
N2—Cu1—O2—C7	34.1 (4)	Cu1—N2—C25—C26	4.6 (4)
N1—Cu1—O2—C7	-70.5 (3)	C22—C21—C25—N2	0.2 (5)
O2—Cu1—O4—C14	83.0 (2)	C20-C21-C25-N2	-178.6 (3)
N2—Cu1—O4—C14	-123.1 (2)	C22-C21-C25-C26	-179.8 (3)
N1—Cu1—O4—C14	-34.7 (3)	C20-C21-C25-C26	1.4 (5)
O10-Cu2-O8-C35	104.0 (2)	C15—N1—C26—C18	0.5 (5)
N4—Cu2—O8—C35	1.0 (4)	Cu1—N1—C26—C18	177.7 (3)
N3—Cu2—O8—C35	-108.7 (2)	C15—N1—C26—C25	-177.9 (3)
O8—Cu2—O10—C42	75.4 (2)	Cu1—N1—C26—C25	-0.7 (4)
N4—Cu2—O10—C42	-128.2 (2)	C17—C18—C26—N1	1.5 (5)
N3—Cu2—O10—C42	-43.8 (3)	C19-C18-C26-N1	-178.9 (3)
O2—Cu1—N1—C15	-27.3 (3)	C17—C18—C26—C25	179.8 (3)
O4—Cu1—N1—C15	86.4 (3)	C19—C18—C26—C25	-0.6 (5)
N2—Cu1—N1—C15	179.3 (3)	N2-C25-C26-N1	-2.7 (5)
O2—Cu1—N1—C26	155.9 (2)	C21—C25—C26—N1	177.4 (3)
O4—Cu1—N1—C26	-90.4 (3)	N2-C25-C26-C18	178.9 (3)
N2—Cu1—N1—C26	2.5 (2)	C21—C25—C26—C18	-1.1 (5)
O2—Cu1—N2—C24	67.7 (4)	C34—C29—C30—O9	176.9 (4)
O4—Cu1—N2—C24	-38.6 (3)	C35—C29—C30—O9	-1.1 (6)
N1—Cu1—N2—C24	177.4 (3)	C34—C29—C30—C31	-3.3 (6)
O2—Cu1—N2—C25	-113.6 (3)	C35—C29—C30—C31	178.7 (4)
O4—Cu1—N2—C25	140.1 (2)	O9—C30—C31—C32	-176.1 (5)
N1—Cu1—N2—C25	-3.9 (2)	C29—C30—C31—C32	4.0 (7)
O10—Cu2—N3—C43	91.7 (4)	C30—C31—C32—C33	-1.5 (8)
O8—Cu2—N3—C43	-22.9 (4)	C31—C32—C33—C34	-1.6 (8)
N4—Cu2—N3—C43	179.9 (3)	C30—C29—C34—C33	0.2 (6)

O10-Cu2-N3-C54	-81.1 (3)	C35—C29—C34—C33	178.1 (4)
O8—Cu2—N3—C54	164.3 (2)	C32—C33—C34—C29	2.3 (7)
N4—Cu2—N3—C54	7.1 (2)	Cu2—O8—C35—O7	8.9 (4)
O10—Cu2—N4—C52	-40.7 (3)	Cu2—O8—C35—C29	-169.2 (3)
O8—Cu2—N4—C52	61.4 (5)	C30—C29—C35—O7	13.4 (6)
N3—Cu2—N4—C52	175.8 (3)	C34—C29—C35—O7	-164.5 (4)
O10—Cu2—N4—C53	136.2 (2)	C30—C29—C35—O8	-168.4 (4)
O8—Cu2—N4—C53	-121.6 (3)	C34—C29—C35—O8	13.7 (5)
N3—Cu2—N4—C53	-7.3 (2)	C41—C36—C37—O12	-178.0 (3)
C6—C1—C2—O3	177.9 (4)	C42—C36—C37—O12	1.6 (5)
C7—C1—C2—O3	-0.8 (6)	C41—C36—C37—C38	1.4 (5)
C6—C1—C2—C3	-2.7 (6)	C42—C36—C37—C38	-179.0 (3)
C7—C1—C2—C3	178.7 (4)	O12—C37—C38—C39	178.1 (4)
O3—C2—C3—C4	-177.4 (5)	C36—C37—C38—C39	-1.3 (6)
C1—C2—C3—C4	3.2 (7)	C37—C38—C39—C40	-0.1 (7)
C2—C3—C4—C5	-1.7 (7)	C38—C39—C40—C41	1.4 (7)
C3—C4—C5—C6	-0.3 (7)	C39—C40—C41—C36	-1.3 (6)
C4—C5—C6—C1	0.7 (6)	C37—C36—C41—C40	-0.1 (6)
C2—C1—C6—C5	0.7 (6)	C42—C36—C41—C40	-179.6 (4)
C7—C1—C6—C5	179.4 (4)	Cu2—O10—C42—O11	0.7 (4)
Cu1—O2—C7—O1	-3.1 (5)	Cu2—O10—C42—C36	-179.8 (2)
Cu1—O2—C7—C1	175.1 (3)	C41—C36—C42—O11	178.5 (3)
C2-C1-C7-01	5.6 (6)	C37—C36—C42—O11	-1.1 (5)
C6—C1—C7—O1	-173.1 (4)	C41—C36—C42—O10	-1.0 (5)
C2—C1—C7—O2	-172.7 (4)	C37—C36—C42—O10	179.4 (3)
C6—C1—C7—O2	8.7 (5)	C54—N3—C43—C44	0.8 (6)
C13—C8—C9—O6	-178.6 (4)	Cu2—N3—C43—C44	-171.4 (3)
C14—C8—C9—O6	4.4 (5)	C54—N3—C43—C55	-178.9 (4)
C13—C8—C9—C10	1.6 (6)	Cu2—N3—C43—C55	8.8 (6)
C14—C8—C9—C10	-175.5 (3)	N3-C43-C44-C45	-0.8 (7)
O6-C9-C10-C11	179.4 (4)	C55—C43—C44—C45	178.9 (4)
C8—C9—C10—C11	-0.8 (6)	C43—C44—C45—C46	0.3 (7)
C9—C10—C11—C12	-0.7 (8)	C44—C45—C46—C54	0.3 (6)
C10-C11-C12-C13	1.4 (8)	C44—C45—C46—C47	179.4 (4)
C9—C8—C13—C12	-1.0 (6)	C45—C46—C47—C48	-179.4 (4)
C14—C8—C13—C12	176.1 (4)	C54—C46—C47—C48	-0.3 (6)
C11—C12—C13—C8	-0.5 (7)	C46—C47—C48—C49	0.2 (7)
Cu1—O4—C14—O5	9.1 (4)	C47—C48—C49—C53	0.4 (6)
Cu1—O4—C14—C8	-170.0 (2)	C47—C48—C49—C50	-179.6 (4)
C13—C8—C14—O5	173.0 (4)	C53-C49-C50-C51	-1.4 (6)
C9—C8—C14—O5	-9.9 (5)	C48—C49—C50—C51	178.5 (4)
C13—C8—C14—O4	-7.8 (5)	C49—C50—C51—C52	1.0 (7)
C9—C8—C14—O4	169.2 (3)	C53—N4—C52—C51	-3.6 (6)
C26—N1—C15—C16	-1.6 (5)	Cu2—N4—C52—C51	173.1 (3)
Cu1—N1—C15—C16	-178.2 (3)	C53—N4—C52—C56	175.1 (3)
C26—N1—C15—C27	176.9 (3)	Cu2—N4—C52—C56	-8.2 (5)
Cu1—N1—C15—C27	0.3 (5)	C50-C51-C52-N4	1.6 (6)
N1-C15-C16-C17	0.7 (6)	C50-C51-C52-C56	-177.2 (4)
C27—C15—C16—C17	-177.7 (4)	C52—N4—C53—C49	3.2 (5)

C15-C16-C17-C18	1.3 (6)	Cu2—N4—C53—C49	-174.0 (3)
C16—C17—C18—C26	-2.3 (5)	C52—N4—C53—C54	-176.5 (3)
C16—C17—C18—C19	178.1 (4)	Cu2—N4—C53—C54	6.2 (4)
C26—C18—C19—C20	2.0 (6)	C50—C49—C53—N4	-0.6 (5)
C17—C18—C19—C20	-178.4 (4)	C48—C49—C53—N4	179.4 (3)
C18—C19—C20—C21	-1.7 (6)	C50—C49—C53—C54	179.1 (3)
C19—C20—C21—C25	0.0 (6)	C48—C49—C53—C54	-0.9 (5)
C19—C20—C21—C22	-178.7 (4)	C43—N3—C54—C46	-0.2 (5)
C25—C21—C22—C23	-2.4 (6)	Cu2—N3—C54—C46	173.5 (3)
C20—C21—C22—C23	176.3 (4)	C43—N3—C54—C53	-179.6 (3)
C21—C22—C23—C24	1.1 (6)	Cu2—N3—C54—C53	-5.9 (4)
C25—N2—C24—C23	-4.8 (5)	C45—C46—C54—N3	-0.4 (5)
Cu1—N2—C24—C23	173.8 (3)	C47—C46—C54—N3	-179.5 (3)
C25—N2—C24—C28	174.4 (3)	C45—C46—C54—C53	179.0 (4)
Cu1—N2—C24—C28	-7.0 (5)	C47—C46—C54—C53	-0.2 (5)
C22—C23—C24—N2	2.6 (6)	N4-C53-C54-N3	-0.1 (5)
C22—C23—C24—C28	-176.5 (4)	C49—C53—C54—N3	-179.9 (3)
C24—N2—C25—C21	3.4 (5)	N4C53C54C46	-179.5 (3)
Cu1—N2—C25—C21	-175.4 (3)	C49—C53—C54—C46	0.7 (5)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H···A
O12—H12…O11	0.82	1.82	2.549 (4)	147
O9—H9…O7	0.82	1.84	2.561 (4)	146
O6—H6…O5	0.82	1.85	2.572 (4)	146
O3—H3…O1	0.82	1.82	2.553 (5)	148

Fig. 2